skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Venezia, Michael D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. El Mohtar, Chadi; Kulesza, Stacey; Baser, Tugce; Venezia, Michael D. (Ed.)
    Piles socketed into rock are frequently utilized to carry large loads from long-span bridges and high-rise buildings into solid ground. The pile design is derived from internal shear and moment magnitudes following code recommendation and numerical predictions. Little experimental data exist to validate code prescriptions and design assumptions for piles embedded in rock. To help alleviate the lack of large-scale test data, the lateral response behavior of three 18-in. diameter, 16 ft long, reinforced concrete piles was evaluated. The pile specimens were embedded in a layer of loose sand and fixed in “rock-sockets,” simulated through high strength concrete. The construction sequence simulated soil-pile interface stress conditions of drilled shafts. The pile reinforcement varied to satisfy the internal reaction forces per (1) code requirements, (2) analytical SSI predictions, and (3) structural demands only. The pile specimens were tested to complete structural failure and excavated thereafter. Internal instrumentation along with crack patterns suggested a combined shear-flexural failure, but do not support the theoretically predicted amplification and de-amplification of shear and moment forces at the boundary, respectively. 
    more » « less